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Abstract: 

There is a need for fast and efficient beer fraud detection methods to increase product 

safety for the beer industry and beer consumers. In the present study, an electronic tongue 

based on cyclic voltammetry using a single commercial screen-printed carbon electrode 

(SPCE) and chemometric techniques were used for forensic differentiation of Brazilian 

American lager beers. To perform a differentiation of the beers at manufacturer and brand 

level the classification techniques: soft independent modeling of class analogy (SIMCA), 

partial least squares regression discriminant analysis (PLS-DA), and support vector 

machines discriminant analysis (SVM-DA) were tested. In total, 240 beers comprising 19 

distinct brands either from the three major Brazilian manufacturers (Ambev, Heineken, 

Petropolis) or from other producers were used to construct the models. The linear 

techniques (SIMCA and PLS-DA) did not perform well on the classification of the beers 

according to the manufacturers. PLS-DA model presented an inconclusive assignment 

ratio of 20%. On the other hand, Simca models had a 0 inconclusive rate, but a moderate 

classification performance, with low overall sensibility (85%). SVM-DA, the non-linear 

technique, has shown the best overall classification results with an overall 98% of 

accuracy 95% of sensitivity, and 98% of specificity. The coupled SPCE-SVM-DA 

technique was then used to create a model that distinguishes two highly frauded beer 

brands (Amstel and Brahma). The technique was performed with high accuracy of 97% 

for the classification of both brands. Therefore, as the most common beer fraud practice 

in Brazil is the label switch, the proposed e-tongue was deemed an appropriate tool to 

evaluate this type of counterfeit. 

Key-words: Support Vector machines, Classification methods, Cyclic voltammetry, 

Electrochemical analysis, PLS-DA, SIMCA, Beer fraud 
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1 Introduction 

 Beer is one of the most popular alcoholic beverages worldwide with a US$ 612 

billion revenue in 2021 and a 10% annual growth projected for this market between 2021 

and 2025 (Statista, 2021). In 2018, Brazil was the third-biggest producer, with a 

production of 14 billion liters, only behind China and United States (Report, 2019). 

Similar to the global market, the Brazilian beer market is dominated by few large 

breweries. Currently, three companies, namely Ambev (a subsidiary of the AB InBev), 

Heineken group, and Petropolis group account for 96% of the Brazilian beer market share 

where the most commercialized style is the American lager (CervBrasil, 2020). In such a 

competitive market beers from these manufacturers are commercialized with higher value 

due to their effective market presence, consumer loyalty, and the quality attributed to the 

brand’s name. However, these characteristics make these brands subject to fraud 

practices. 

 Due to the pandemic’s lowering in surveillance, recent reports revealed an 

increasing trend in beer fraud and counterfeiting practices (Valor, 2020). The most 

common type of fraud is switching the label and cap of lower-value brands for higher-

value ones (Civil, 2020; Extra, 2021; Globo, 2020). Detection of this type of fraud is 

analytically challenging as the distinctions among beers from the same style can be very 

subtle. Therefore, the development of a fast and reliable, and portable technique to 

classify American lager beers from distinct manufacturers and brands is necessary to 

ensure product security. 

 However, the challenge of classification amongst the same style as required for 

the detection fraud was only approached with advanced analytical techniques such as 1H 

NMR (da Silva, Flumignan, Pezza, et al., 2019) and paper spray mass spectrometry 
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(Pereira et al., 2016). Although these techniques are very sensible, they rely on expensive 

equipment, use of solvents, and lack portability. In this regard, the use of electronic 

tongues (ET) is regarded, as they offer a fast, reliable, and portable option for the 

fingerprint of several food matrices. ETs are analytical systems composed of unspecific 

electrochemical sensors coupled with chemometric techniques to identify the 

characteristics of a complex system (Galvan et al., 2021).  

 The use of ET in beer science is described for classification among beers from 

distinct styles (Blanco et al., 2015; Gutiérrez et al., 2013; Roselló et al., 2021) and distinct 

raw materials (Mutz et al., 2021). Since each beer will present chemical variation related 

to its manufacturing process and employed raw materials the use of ETs emerges as a 

viable option for forensic tasks (Mutz et al., 2020). Indeed, in our previous work, we 

developed an ET based on commercially available SPE’s and chemometric techniques 

capable of discriminate between Premium and standard and American lager beers. 

However, a further challenge would be to discriminate between beers of the same style 

from distinct brands, as it offers great forensic potential. Therefore, regarding the need 

for rapid, reliable, and portable methods with forensic potential for beer classification, 

the present study evaluates the potential use of cyclic voltammetry coupled with 

classification methods to discriminate among American lagers from the three major 

Brazilian producers. 

 

2. Material and methods 

2.1 Beer samples 

 In total, 240 beer samples were purchased at local supermarkets in the 

metropolitan region of Espírito Santo State (Brazil). The sampling comprised 19 different 
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brands from the three major commercialized groups that in the Brazilian market (Ambev, 

Petropolis group, Heineken group), and from other manufacturers.  

 

2.2 Instrumentation and voltammetric measurements 

 Cyclic voltammetry measurements were performed on a portable 

potentiostat/galvanostat μSTAT 400 (Metrohm DropSens, Oviedo, Spain) controlled by 

Dropview 8400® software using a disposable SPCE made by Metrohm-Dropsens 

(Oviedo, Spain). The SPCE used were a DS-110 carbon working electrode with 

dimensions of 3.4 x 1 x 0.05 cm containing three electrodes printed on the same planar 

ceramic platform: a working electrode, a pseudo reference electrode (Ag/AgCl), and an 

auxiliary electrode manufactured in the same material as the working electrode. In this 

work, there was not necessary the use of supporting electrolytes, once the samples (beers) 

present electrolytes that become make possible the electrochemical measurements  

Before electrochemical measurements, the beer samples were opened for 30 

minutes for the removal of excess CO2. Voltammetric measurements were performed at 

room temperature (25 ºC) in triplicate dropping a 40 μL aliquot on the surface of the 

electrode. The cyclic voltammetry scan was performed following the settings from a 

previous experiment (Mutz et al., 2021), using the range of between −1.0 V and 1.0 V, 

with a scan rate of 100 mV s−1, totaling 40 seconds per scan, without the need for support 

electrolyte. 

 

2.3 Chemometric procedures 

2.3.1 Data treatment  

The beer samples voltammograms were concatenated in a matrix (240 x 2000), 

with each line corresponding to a sample and the columns corresponding to the current 
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signals. The dataset was then preprocessed by mean-centering. To construct the 

classification models according to the manufacturer, samples were labeled for each of the 

manufacturing groups (Ambev, Petropolis, Heineken, Other). Furthermore, for the brand 

challenge, the samples were labeled as either Brahma, Amstel, or other. All statistical 

analyses were performed using the Matlab 2016a software (The MathWorks, 

Massachusetts, USA). 

 

2.3.2 Classification techniques 

The linear classification techniques used were partial least squares discriminant 

analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA) using the 

classification toolbox of the Milano chemometrics and QSAR research group (Ballabio 

& Consonni, 2013). The non-linear technique support vector machines discriminant 

analysis (SVM-DA) was employed using the Gamma toolbox (Bona et al., 2017).  

 SIMCA is a class modeling technique that relies on PCA to model a class with 

reduced dimensionality. SIMCA constructs individual models for each of the sample’s 

categories. Therefore, as classes are independently modeled, new samples are predicted 

as belonging to the class or not. Further, class assignment relies on a distance measure to 

interpret if the samples belong or not to the modeled class. In the implemented SIMCA, 

the distance measure is a combination of the normalized T2 statistics and normalized Q 

residuals (Ballabio & Consonni, 2013).  

 A multi-class PLS-DA model was built to simultaneously define class boundaries 

between the distinct categories. The techniques focus on the dissimilarities between the 

different classes to find class belonging traits. PLS-DA uses the PLS2 algorithm to search 

for latent variables that maximize the correlation between independent and dependent 

variables. A class threshold is defined for each class to minimize the number of incorrect 
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assignments. Thus, based on the probability of class belonging and class threshold the 

samples are assigned to a class. Furthermore, samples can also be non-assigned in the 

case of their calculated estimates being higher or lower than all the calculated class 

thresholds (Ballabio & Consonni, 2013).  

 SVM-DA is a non-linear discriminant technique. The technique employs kernels 

to map data from linearly inseparable problems into high dimensional feature spaces and 

then perform classification (Argyri et al., 2013). In the present study radial basis function 

(RBF) was chosen as the kernel function. In this technique the dimensionality of the 

feature space that performs the samples separation is determined by the RBF γ parameter, 

while the complexity of the model is set by the penalty parameter C. Together the γ and 

C parameters control a trade-off between the model generalization ability and its 

complexity (Bona et al., 2017).  

 

2.3.3 Optimization of the model parameters 

The optimization of the number of principal components for SIMCA and latent 

variables for PLS-DA was done with 10-fold cross-validation in the calibration dataset. 

For this cross-validation, the calibration set was divided into ten subgroups and one 

subgroup at a time was removed from the data set and used for external validation for the 

constructed model. At the end of the process, the number of components or latent 

variables that minimize the classification error was chosen. 

The SVM parameter C and the RBF kernel parameter γ were simultaneously 

optimized using particle swarm optimization (PSO) and 10-fold cross-validation to 

maximize the classifier performance. The PSO was executed with a swarm of 2000 

particles and a maximum convergence error tolerance of 1 x 10-3 between the calculated 

value at an interaction stall of 20 subsequent iterations (Galvan et al., 2020). The 
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restrictions of the PSO algorithm were set in the form of lower and upper bounds were (1 

x 10-8 to 1 x 10-4) for γ and (1 x 102 to 1 x105) for C. For the brand challenge, the 

optimization interval was 1 x 10-7 to 1 x 10-3 for γ and 1 x100 to 1 x 104 for the C 

parameter.  

 

2.3.4 Validation, and performance of the models 

To perform the external validation first the dataset (240 beer samples) was split 

into a validation set with 30% of the samples and a calibration set with the remaining 

70%. Separation of the datasets was performed using the duplex algorithm (Snee, 1977) 

to obtain a more conservative separation of the samples (Westad & Marini, 2015). Then, 

the validation was performed by calculating the performance parameters of the obtained 

classification models. 

The performance figures of merit (FOM) for validation of the models were 

calculated for the model prediction in the calibration and test datasets. The calculated 

FOM were: accuracy, sensitivity, specificity, and inconclusive ratio (IR), Equations 1, 2, 

3, and 4 respectively. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
         (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
        (4) 

𝐼𝑅 =
𝑁𝐴

𝑁
          (5) 

 

 TP, FN, TN, and FP indicate the number of true positive, false negative, true 

negative, false-positive, samples respectively. Further, IR is the inconclusive rate, NA is 

the number of non-assigned samples, and N is the number of samples belonging to the 

class. A summary of the implemented procedure is shown in scheme 1. 
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Scheme 1. Schematic illustration of the analysis and differentiation procedure of beer 

samples. Data collection was performed by cyclic voltammetry with SPCE from a drop 

(40µL) of the samples and data treatment using the PLS-DA, SIMCA, and SVM-DA 

techniques to differentiate the manufactures. 

 

3 Results and discussion 

3.1 Electrochemical profile 

 Cyclic voltammetry is the most used technique for the acquisition of qualitative 

information on the electrochemical properties of a food system (Hoyos-Arbeláez et al., 

2017). It consists of a linear scan of the potential of a working electrode thus providing 

information on the redox process and electron-transfer reactions of a matrix (Vilas-Boas 

et al., 2019). As beer is a matrix that possesses several molecules susceptible to undergo 

redox processes, the collected information becomes useful for the construction of 

classification models (Mutz et al., 2021).  

 All voltammograms and average voltammograms of the samples discriminate by 

the manufacturer are shown in Figure 1. Although a great similarity between the 

voltammograms obtained can be observed  (Figure 1a-d), it is also noticeable that each 

manufacturer shows its peculiarities. The voltammograms of samples from producer 

Ambev show a slight "peak" of reduction around 0.1 V in practically all samples, which 

does not appear with such intensity in the other groups of samples. The samples from the 

Heineken group showed a great variation within the voltammograms from the producer. 
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Furthermore, it is observed that the voltammograms of the Heineken group present a 

slight "peak" of oxidation around 0.8 V, distinct from the others. The samples from the 

Petropolis groups present voltammograms with good reproducibility between the samples 

themselves. Finally, the voltammograms obtained from the samples of the "others" group 

present a good variety of profiles obtained, with samples generating responses similar to 

all three groups discussed above.  

 

Figure 1. (a-d) All cyclic voltammograms of Brazilian American lager beer discriminated 

by manufacturers and (e) average cyclic voltammograms from the 240 beers obtained 

with screen-printed carbon electrodes. Scan rate: 100 mV s−1. Scan direction (→).  

 

 In Figure 1e is observed that the average voltammograms from the manufacturers 

are similar with subtle distinctions, with an exception for the Heineken group 

voltammogram that stands out. Each beer is unique, varying on the type of fermentation, 

style, ingredients, and manufacturing process (Mutz et al., 2020).  
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 In the present study, the challenge is to gather electrochemical information about 

beers of the same style from distinct producers. The electrochemical distinctions at the 

manufacturer or brand level between beers of the same style can be attributed to several 

electroactive molecules such Na+/K+  adducts of oligosaccharides(Pereira et al., 2016), 

phenolic acids, esters, higher alcohols, and organic acids (Alcázar et al., 2012; da Silva, 

Flumignan, Pezza, et al., 2019; da Silva, Flumignan, Tininis, et al., 2019; Fernández 

Pierna et al., 2012; Lunte et al., 1988; Pereira et al., 2016). Therefore, as these classes of 

molecules can be detected by the employed cyclic voltammetry technique (Cetó et al., 

2013; Deo & Wang, 2004; Mutz et al., 2021), it can be assumed that difference in the 

voltammograms to be related to their contents. 

 The content of organic acids and higher alcohols in beer relates to several 

distinctions in beer manufacturing. Higher alcohols are byproducts of yeast metabolism, 

either in anabolic or catabolic pathways (Lodolo et al., 2008). As for the organic acids, 

although they may be a product of yeast metabolism, their majority is produced during 

the malt’s germination step (Li et al., 2007; Xiang et al., 2006). Indeed organic acids are 

very important to beer flavor, as they directly influence its sourness (Saison et al., 2009). 

Due to their importance, there are classification studies based on the beer’s organic acid 

profile (da Silva, Flumignan, Pezza, et al., 2019; Li et al., 2007). Furthermore, the 

distinction in phenolic acids, esters, aldehydes, ketones, and other electroactive molecules 

is multifactorial, from the raw ingredients employed, to the conduction of the variables 

of the brewing process, and its quality control (Paiva, Mutz & Conte-Junior, 2021). 

 

3.2 Classification according to manufacture 

 The task of classifying the beers according to their distinct manufacturers was 

approached with supervised pattern recognition techniques (PLS-DA, SIMCA, SVM-
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DA) (Table 1). The first approach was made using the linear classification methods: 

SIMCA and PLS-DA.  
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Table 1 1 

  LV  Training    Test   
Technique Beer  Sensitivity Specificity Accuracy NA Sensitivity Specificity Accuracy IR 

 Ambev  0.94 0.96 0.91 0.17 0.95 0.92 0.83 0.20 
PLS-DA Petropolis  1 0.96   1 0.96   
 Heineken  0.74 1   0.43 1   
 Casa DiConti  0.91 0.95   0.90 0.90   

 Overall  0.90 0.97  0.17 0.82 0.94   

 Ambev  0.97 0.96 0.96  0.82 0.89 0.86  
SIMCA Petropolis  1 0.99 0.99  0.84 0.96 0.93  
 Heineken  0.94 0.93 0.93  0.76 0.93 0.89  
 Casa DiConti  1 0.97 0.98  1 0.95 0.96  

 OVERALL  0.98 0.96 0.96  0.85 0.93 0.91  

SVM-DA Ambev  100 0.9908 0.9943  0.9333 0.9778 100  
 Petropolis  100 100 100  100 0.9824 94,67  
 Heineken  0.9756 0.9854 0.9831  0.8823 0.9655 98,67  
 Casa DiConti  100 100 100  100 100 96  

 OVERALL  0.99 0.99 0.99  0.95 0.98 0.98  

* PLS-DA: Partial least squares discriminant analysis; SIMCA: Soft independent modeling of class analogies; SVM: Support Vector machine 2 

discriminant analysis; Inconclusive rate  3 

 4 

 5 
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 In the present study, the PLS-DA constructed model with 4 classes (Ambev, 

Heineken, Petropolis, and others) presented an accuracy of 83%. The PLS-DA FOM was 

above or equal to 90% for all classes except for the Heineken group’s beer, which 

presented a sensitivity of 43% (Table 1). PLS-DA is a discriminant technique that focuses 

on the distinction among the defined classes to define a separation threshold among them 

(Brereton et al., 2018). The low sensitivity of this class may indicate a high intra-class 

variation, i.e., a distinct electrochemical profile among samples from the Heineken group. 

On the other hand, the distinction that the Heineken group samples showed in their 

voltammograms when compared to the other manufacturers (Figure 1) corroborate the 

100% specificity achieved in this class.  

 Nonetheless, the use of PLS-DA to classify the beer manufacturers was not 

considered satisfactory, once the built model could not assign 15 out of the 75 samples of 

the test samples, leading to an inconclusive rate (IR) of 20%. Corroborating our findings 

(da Silva, Flumignan, Pezza, et al., 2019) approached the classification of Brazilian beers 

by its manufacturers (Ambev, Heineken, and Petropolis) using 1H NMR spectroscopy and 

PLS-DA, and also found a non-assignment rate of 6.89% for the Petropolis and Ambev 

groups. A non-assignment by the PLS-DA model is achieved when a sample is perceived 

as belonging to multiple classes, or none of the classes at all (Ballabio & Consonni, 2013). 

Therefore, it can be implied that the PLS-DA model does not have sufficient 

discriminative power to separate the manufacturers based on their electrochemical 

information. 

 On the other hand, the SIMCA models did not present non-assigned samples, 

leading to an inconclusive rate of 0. In addition, the model’s achieved an overall accuracy 

of 96 %, superior to the PLS-DA model. In contrast to PLS-DA, a discriminant method, 
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SIMCA is a one-class-classifier (OCC) technique that focuses on the class similarities to 

individually model class boundaries (Oliveri & Downey, 2012)). SIMCA models 

presented good values for specificity, with an average value of  91%. Specificity 

represents the model’s ability to reject samples from other classes from being classified 

as the observed class (Ballabio & Consonni, 2013). This metric is specifically important 

when dealing with authentication or forensic tasks as their objective is to rule out out-of-

pattern samples caused by fraudulent practices (Biancolillo et al., 2014). For this reason, 

the use of class modeling techniques is regarded (Rodionova et al., 2016). Indeed, SIMCA 

is widely adopted for the goal of the authenticity of food and beverages (Oliveri & 

Downey, 2012). However, except for the group of other manufacturers, the SIMCA 

models’ sensitivity was low. Therefore, pointing to an inefficient recognition of the 

samples as true belonging to the tested class. 

 The overall low performance of the PLS-DA and SIMCA models can be indicative 

that the brands could not be linearly separated. Therefore, SVM-DA, a non-linear 

classification technique was employed. First, the SVM-DA parameters γ and C were 

adjusted using particle swarm optimization. The parameters were chosen after a 10-fold 

cross-validation process to minimize classification error. The manufacturer model 

optimized parameter was γ = 8.90 x 10-7 and C = 4.85 x 103.  

 The accuracy of the SVM-DA technique was superior to the linear methods, with 

an overall of 98% (Table 1). SVM-DA separation was performed with an overall 

specificity of 98% and sensitivity of 95%. The model’s prediction for the beer samples of 

all the defined classes can be seen in Figure 2. 
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Figure 2 SVM-DA prediction showing the calculated threshold for discrimination 

(horizontal dashed line) of (A) Ambev samples. (B) Petropolis group samples. (c) 

Heineken group samples. (D) Other manufacturers samples. The horizontal dashed line 

separates the calibration dataset (left side) and the validation dataset (right side) 

 

 Although requiring higher computing power, these techniques allow for the separation 

of seemly inseparable overlapping classes (Argyri et al., 2013). Indeed, the use of SVM-

DA for beer classification is successfully described in the literature as differentiation of 

geographical origin (Alcázar et al., 2012) and authentication of Trappist beers (Fernández 

Pierna et al., 2012). Moreover, in accordance with our study (Roselló et al., 2021) also 

found that SVM-DA led to lower (5.3%) classification error than PLS-DA (23.6%) when 

discriminating among beers with distinct fermentations using a carbon SPE and cyclic 

voltammetry. 

 SVM-DA maps the input data into higher dimensional feature spaces and then 

performs classifications (Alcázar et al., 2012; Bona et al., 2017). In the present approach, 
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the performed SVM-DA classification of multiple manufacturing brands was made with 

the one versus all (OVA) approach. In this approach, the targeted class is separated from 

the rest of the samples which is grouped as the foreign sample. For being a discriminant 

technique, the use of the OVA approach means that the hyperplane designed to classify 

the beer brand takes into account all the other manufacturers as outsiders. Based on the 

model results, such a technique was considered suitable for the proposed classification 

task.  

 Such promising results raised the question of whether the developed SVM-DA-

cyclic voltammetry ET is suitable to be employed in forensic tasks. The most simple and 

common method of beer fraud in Brazil is to switch caps or labels of a beer (da Silva, 

Flumignan, Tininis, et al., 2019). Therefore, to test if the technique developed was indeed 

suitable for fraud detections, we tested its ability to differentiate beers at the brand level. 

To perform the brand challenge two frequently reported frauded brands within the 

Brazilian big producers, Brahma from Ambev group and Amstel from Heineken group 

were selected (Civil, 2020; Extra, 2021; Globo, 2020). 

 The optimization of the SVM parameters for this challenge was performed for the 

manufacturer models. The optimum values were γ = 3.52 x 10-6 and C =1.48 x 101.  

The tuning of the γ and C parameters defines the classification boundaries of the SVM 

model. While γ defines the influence of each selected support-vector, and therefore the 

smoothness of the classification surface, C controls the model complexity in a trade-off 

between the number of incorrect classifications and the model margin (Bona et al., 2017). 

Thus, a higher C means that the dataset is reliable and a higher penalty is given to 

classification error in exchange for a lower margin for the decision boundary is employed 

(Papadopoulou et al., 2013). Therefore, for the beers classification, the brand separation 

had a smoother classification boundary but a noisier dataset when compared to the 



 

19 
 

manufacturers production. This can be attributed to the possibility of some of the sampled 

beers being electrochemically close to the profile of the Brahma and Amstel studied beers.  

 The SVM-DA model constructed for the brand challenge presented no un-

assignments leading to an inconclusive rate of 0. The separation between the two tested 

brands versus other beers is shown in Figure 3. Similar to the results found for the 

manufacturer test, the SVM-DA models presented high accuracy (97% for the Brahma 

and 96% for the Amstel). Further, the sensitivity of the models ranges from 87-90% and 

specificity from 97-98%.  
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Figure 3. Samples Plot showing the calculated threshold for discrimination (grey line) for 

the support vector machines discriminant analysis model. Blue circles are (a)Brahma beer 

samples and (b) Amstel beer samples; Samples above the grey line are classified as 

Brahma or Amstel for the technique. Samples from the left side of the grey line are part 

of the calibration dataset and on the right side are part of the validation set. 

 

 This high performance works as a demonstration that after being suitable for 

differentiation at the manufacturers-level, a separation of brand level is achievable with 

the developed SPCE-SVM-DA configuration for the ET. Therefore, as depicted by its 

performance results the developed technique proves to be a rapid, costless, efficient 

method for fraud detection. Furthermore, it should be a highlight that the present 

technique is portable, presenting great potential for in loco analysis, which is attractive 

for government agencies, consumers, and even breweries. 

 

4. Conclusion 

 A novel approach based on a single screen-printed electrode coupled with SVM-

DA for rapid, direct, and effective differentiation of Brazilian’s American lager beers has 

been developed. The proposed configuration for an electronic tongue has been shown to 

predict with great specificity and sensibility from the three major Brazilian manufacturers 

(Ambev, Heineken, Petropolis). Furthermore, the configured ET allowed for the 

differentiation at the brand level of two commonly frauded beers (Brahma and Amstel). 

Furthermore, the developed ET employs portable equipment and commercially available 

SPCE’s. Therefore, the developed portable ET proved to be one useful tool for regulation 

purposes and forensic applications such as fraud and counterfeit surveillance. Future 

highlights for this field include exploring the potential of chemometric techniques 

coupled with homemade electrodes (3D printed, pencils, ink, among others electrodes) to 

help the field of forensic analysis. 
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